JOURNAL OF CHROMATOGRAPHY 1
CHROM. 4405

AN EQUILIBRIUM THEORY I'OR RARE-EARTH SEPARATION BY
DISPLACEMENT DEVELOPMENT

IF, HELFFERICH

Shell Development Company, Iimeryville, Calif. 94608 (U.S.A.)

AND

D. B. JAMES®

Nuclear Materials and IEqiipment Corporation, A polle, Pa. r5613 (U.S.4.)

(Received September 29th, 1969)

SUMMARY

A general equilibrium theory of chromatography is applied to the separation of
rare earths by displacement development on a cation exchanger. The essential premises
are local equilibrium, uniform sorbent properties, plug flow, absence of axial diffusion,
stoichiometric exchange, and constant separation factors. Both development of a
preadsorbed uniform band with a chelating agent and operation with chelation prior
to loading are considered. The theory yields the distances and times required for
resolution of any component from any other was well as the mobile-phase and station-
ary phase compositions at any point and time during development. Application of the
theory to the separation of a fifteen-component rare-earth mineral, euxenite, illustrates
the method.

INTRODUCTION

A highly successful process for preparative commercial separation of rare carths
in ton quantities with high purity is displacement development with a chelating agent
on a cation exchanger:2, The characteristic and well-known features of this type of
separation are that the mixture to be separated travels as a band of constant width,
being displaced by a chelating development agent and itself displacing a retaining
agent with which the column was presaturated; on its way through the column (or
through a number of columns in series) the species within the band sort themselves
out into individual zones of one species each, which all travel at the same rate and
follow one another without interval, In practice, finite mass-transfer rates and un-
avoidable disturbances cause some overlap between the final zonés, but under the
simplifying premises usually employed the theory gives ideally sharp boundaries
between the zones. A typical operation is with an ammonium-EDTA buffer as the
development agent on a strong-acid cation exchanger with Cu2+ as the retaining ion,

* The contribution of D, 13, JamEes to this worlk was supported by Michigan Chemical Cor-
poration, St. L.ouis, Mich., U.S.A.
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2 F. HELFFERICH, D. B. JAMES

as developed by SPEDDING AND PowELL and their associates!:3:4, to whose publications
we refere for chemical mechanism, equipment, and practical details.

The development behavior is illustrated in I'ig. 1 for the separation of a pre-
adsorbed uniform band of a binary mixture. As development proceeds, the zone having
the composition of the original mixture shrinks and eventually disappears, while zones
ofthe two pure components grow on either side, all within the traveling band of constant
length. The broken lines, superimposed on the column pictures, trace the traveling
boundaries between the zones of different compositions.
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TFig. 1. Separation of binary mixture (schematic). (From 1D, B. James, J. E. PowtLr aND H-R
BURKHOLDER?.)

For optimum design, a knowledge of the distance and time a given mixture must
travel to be resolved is obviously of key importance. Previous theoretical treatments,
by SILLEN® and SPEDDING, POWELL ef al.4%-?, have givensolutions for separations of
binary and ternary mixtures but are not readily extended to more complex cases. A
recent general theory of multicomponent chromatography under arbitrary initial and
influent conditions!?, however, comprises displacement development as a special
case and can be applied to provide the desired extension to any number of compo-
nents, as will be shown here.

Computations with the formulas which follow are straightforward but become
lengthy for systems with many components. For these a computer program that
tabulates and plots the results has been made available!!. The results calculated by
this program for a fifteen-component separation will be shown here as an example.

Space limitations forbid us to give more than the mere outlines of derlvatlonq
and proofs. IFor details reference to the original theory!? must be made.
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EQUILIBRIUM THEORY FOR RARE-EARTHS BY DISPLACEMENT DEVELOPMENT 3
PREMISES

The usual assumptions of “equilibrium theories’’ of chromatography are made,
namely, existence of local equilibrium at any point and time, uniform sorbent prop-
erties, plug flow, and absence of axial diffusion. We assume, moreover, that ion
exchange is stoichiometric (i.c., without change in total -mumber of equivalents in
either phase) and that the separation factors are constant. Volume changes of the ion
exchanger are disregarded, and for convenience we only consider operations with a
column of uniform cross section and with constant composition and flow rate of the
development agent. These assumptionsare essentially the same as in the earlier theore-
tical treatments, except that the premise of low solution concentration relative to the
concentration in the ion exchanger, made by SPEDDING, POWELL ¢t al., is not needed.

Theories based on these premises are unrealistic in that they yield ideally sharp
boundaries between the various zones of different compositions, boundaries that in
actual operation are slightly diffuse. However, since practical rare-earth separations
are conducted so that diffuse overlaps between zones are small compared to the band
and zone widths, this idealization does not significantly impair the utility of the
theory.

NOTATION AND DEFINITIONS

We shall consider the separation of an arbitrary 7z-component mixture. The
species are numbered 1, 2, . .., #in the order of decreasing affinity for the ion exchanger
in the presence of the chelating agent. Concentrations are given as equivalent ionic
fractions x; in the liquid and y4in the ion exchanger ( = 1,...,%). Thus, by definition

n n
Zag=1I and Xwv; =1 (1)
=1 tal

at any point in the band. Separation factors e relative to the reference species 1 are
detined as

M1 M
X1 Vi )
(According to POWELL AND SPEDDING?, these factors are virtually equal to the ratios
of the stability constants of the respective chelates, chelation being the almost ex-
clusive cause of selectivity.)
IFor mathematical convenience and greater generality, the derivations make
use of a normalized and adjusted time variable, 7, defined as

T = (twy, — 2)C|C | (3)

1 = (4 =1,...,m) (2)

where ¢ is the true time (say, in seconds), 1, is the linear liquid flow rate (in cm/sec),
zis the distance from the top of the bed (in cm), and C and C are the total concentrations
(sums of concentrations of all components, in ionic equivalents per unit volume of
column) in the liquid and ion exchanger, respectively. (The “adjustment’’ by —z in
eqn. (3).is the mathematically most convenient way of removing the premise C « C
adopted in most earlier theories. Note that the adjusted time has the dimension of a
length.)
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LEQUILIBRIUM THEORY FOR RARE-LEARTHS BY DISPLACEMENT DEVELOPMIENT 5

The adjusted velocity, u,, of a boundary between zones of different compositions
is defined as

u, = 9z/0t|, (4)

where 4 symbolizes the boundary. The definition of 7 has been chosen so that the ad-
justed velocity of the rare-earth band (i.e., of its front and rear boundaries) is unity.

OUTLINE OFF THEORY

Distance—time diagrams

The derivations make use of geometrical constructions in “distance-time
diagrams’’, which show the trajectories of boundaries between zones of different
compositions. Ifor easier mental translation into and from actual column operation,
which is usually downflow, distance from the top of the bed is plotted downward ; with
the column pictures removed, TFig. 1 would thus immediately give a distance-time
diagram. A diagram for a four-component case is shown in Iig. 2. The resolution
distances and times, ultimately sought by the theory, are the coordinate values of the
points at which trajectories intersect, and can thus be calculated once the velocities
of the boundaries (trajectory slopes) are known.

Boundary wvelocitics

A simple material-balance argument (amount entering minus amount leaving
a column segment equals net change in content of segment), the starting point of
theory in almost any text on chromatography, shows that a concentration step of an
arbitrary species ¢ advances at the true velocity #,AC/(AC; 4- 4 C:), where AC; and
AC; are the concentration differences in the liquid and ion exchanger, respectively,
across the step. (The usual equations differ in that they involve the fractional phase
volumes; these cancel if, as is done here, the concentrations are expressed per unit
volume of column rather than of the respective phase.) Conversion to adjusted velocity
and equivalent fractions gives

u, = Axi/Av; (5)

(where dx; and Ay, are the differences across the step), as can be veritied by eqns. (3)
and (4). This relation holds for any species .

Colierence

In multicomponent systems, a boundary between zones of different composition
usually involves concentration variations of any number of species. If the boundary
is to travel without splitting up into separate concentration steps, it is evident that
eqn. (5) must apply to all specics stmudtancously, since the concentration steps of
different species would otherwise travel at different velocities. Accordingly:

Ax[Ayy = Axgldy, = ... = diy/dyy (6)

for any given boundary. In the general theory!?, boundaries that meet this crite-
rion are called cokerent, and it is shown that and how coherent boundaries evolve
from any arbitrary initial conditions. In the present case, the two initial composition

J. Chromatog., 46 (1970) 1—-28



6 F. HELFFERICH, D. B. JAMES

steps, at the front and rear of the uniform initial band, are noncoherent and break up
into sets of coherent boundaries. Similarly, where two coherent boundaries cross,
there is for an instant a noncoherent step, which immediately breaks up again into
two coherent boundaries. All earlier theories have implied without proof that coherent
boundaries are indeed formed.

h-Transformalion and H-function roots

Except for the zone of the original mixture and those at the extreme rear and
front of the band, where only species © and #, respectively, are present, the various
transient compositions are not known beforehand. Eqn. (5) by itself is therefore not
sufficient to-calctilate boundary velocities. This difficulty is best overcome with the
so-called ’-transformation, by which the set of composition variables x,,...,¥, or
Yis+ « -,¥n is replaced by a new set 4,,. . .,/y—1. [Only n—1 variables are needed since,
in view of eqn. (1), only #—1I concentrations x; or y; can be varied independently.]
The advantage of the new variables is that all boundary velocities and other quantities
of interest can be calculated directly from the set of 4; of ¢the initial mixture alone, with-
out the need for computing intermediate compositions or properties.

The &4 are defined as the %2—1I roots in % (or reciprocals of the roots in 1/4) of
the so-called ““H-function’’:

- n - .
n
iZ; ﬂ (It — ayy) xy = 0 (7)
= Ly.,,l
Tt -
or
" ~ 7 I
= /T I
Ll | I Ir a1y
EY) -

It can be readily verified that compositions x4,. . ., 4, and v,, .. .,V in equilibrium with
one another give the same set of H-function roots. The roots are all real and fall into
the intervals

e < < eyqr (E=1,...,n—1I) (9)

IFor each species %4 absent from the respective composition, the polynomial (7)
or (8) has a ‘trlvml root”” t = ayx. Thus

-

hy =1 if vy =0,y, =0
iy = ayq “or Iy = oy if x4 =o0,vi=0 (1 < @<<n) (10)
]"n—l = Cyn if XNp = 0,Vy =0

The other, nontrivial roots are more conveniently calculated from the relations

e x‘ 7 Y
—t =0 or T —L -0 : (11)
bl fo—atyy i1 I/h—X]age

n n

obtained when eqn. (7) is divided by ]—J (B —aqy), or eqn. (8) by ]_J (x/lh— 1I])etqay).
: X J=1 J=1
The roots are readily found by standard numerical procedures, since the functions in

J. Chromatog., 46 (1970) 1—28



EQUILIBRIUM THEORY FOR RARE-EARTHS BY DISPLACEMENT DEVELOPMENT 7
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(=1

factors as in IFig. 2.)

v are single-valued and monotonic between their poles at the various /s = e ;. An
example of this behavior is shown in IFig. 3.
For two and three components, the roots can be given conveniently in an explicit
form. Eqn. (11), solved for 4, gives for two-component compositions
T

ho= o, - X and o= ———— (12)
12 ¢ ‘ Yilttya 4+ Vo

and for three-component compositions

T =14 [A & (A2—4B) 4] and  Jiy,y = e e (13)

where
A= 1= + arp(T —ny) + (T — 1)
B = 1501371 + 0y%s + ay9xy
A =1—y + (1=, + (z — ¥a)/etx3
B = yilarsers + yolarg + valens

J. Chromatog., 46 (tg7o) 1—28
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8 T. HELFFERICH, D. B. JAMES

Tor the converse transformation, to obtain concentrations x; or y; from given
sets of H-function roots, explicit equations can be written for any number of com-
ponents:

n—-1
Ny == H hi — aay) ]—J (a1 — ary) (14)
= t*j (j=1,...,1)
-1 . n I I
=TI~ ) [ - =) i

These equations can be obtained as the solutions of the eqns. (11) with 2y, &y, .. ., By—y
consecutively substituted for 7.

Propertics and behavior of H-function roots

Two of the properties of the H-function roots, examined in detail in the general
theory, are of special importance in the present case. The first one is that only one root
varies across any coherent boundary, and the second, that any boundary in the course of
development is a root variation, propagated across the distance-time plane, that
existed initially or was introduced as an influent composition change. A corollary of the
second rule is that #o »0ot values other than those of the initial and influent compositions
will ocour anywhere at any time. An abbreviated proof of the first rule, applicable to
the present case, is given in the Appendix, where it is also shown that the adjusted

velocity of a coherent composition step with %z as the varying root is given by
n ‘

= hi' he'' ]—I 'y ]_—J o1t (16)

l:g:lc {=1

where /14" and /ix'" are the values of /i on the two sides of the step. IFor the more complex
proof of the conservation properties of the roots reflected in the second rule we must
refer to the original theory®.

The two initial composition steps, at the front and rear of the uniform initial
band, involve variations of all H-function roots and thus are noncoherent. Upon
development they break up into sets of coherent boundaries each involving variation
of one root only. Within each set, the boundaries are in the sequence of increasing
index numbers of their variable roots (seen in the direction of flow), since eqn. (16)
with condition (9) gives the higher velocity for the boundary with variable root of
higher index number. In the distance-time plane, each of the sets of boundaries appears
as a bundle of trajectories having a common point of origin. The trajectories of the
two bundles cross: each trajectory of a root variation A%, of the upstream bundle
crosses all those of variations 4%, 4%, ..., Alig—, of the downstream bundle and
eventually merges with that of A%z of the downstream bundle; the last is a merger
rather than a cross-over because a single coherent boundary is formed from two co-
herent boundaries if these involve variations of the saie root. The resulting.overall
trajectory pattern in the distance—time plane is shown schematically in Fig. 4.

‘The root values for the uniform initial zone can be calculated from its com-
position x,° ..., x° or ¥,°, ..., ¥»° from eqn. (11) and will be designated 4,° ...,

J. Chromatog., 46 (1970) 1—28



EQUILIBRIUM THEORY FOR RARE-EARTHS BY DISPLACEMENT DEVELOPMENT 0

DISTANCE -

TFig. 4. Pattern of trajectories in distance—time plane (schematic). (Adapted from FELFFERICH
AND KLrINt,)

f1n°—1. The root values at the extreme rear and front of the traveling band, where only
species 1 and #, respectively, are present, are readily obtained from condition (10).
At the rear, the absence of species 2, ..., # gives rise to the 7n—1 “trivial’”’ roots

Ity = 1,441 (¢=1,...,2—1) (17)

the index numbers being dictated by condition (g9). Similarly, at the front, the absence
of species 1, ..., n—1I gives rise to the n2—1 trivial roots

Iy = aay (=1, ..., n1—1I) (18)

Thus, any root /;; varies from ¢y k1 to 1x° across the Ahy trajectory of the upstream
bundle, and from 7;° to ey« across the A/ trajectory of the downstream bundle; the
region of %;° narrows with progressing development and disappears when the two
Al trajectories merge.

Compositions of the zones
The composition of all the zones in the distance~time plane can now be calculated

J. Chromatog., 46 (1970) 1—28
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from the roots %;° of the initial mixture. We shall characterize the various zones by
double numbers, 7% referring to the zone between the trajectories of A%y, and A%
of the downstream bundle and those of 4hg—; and 2z of the upstream bundle (57 << £).
Using this convention, the j& zone is downstrean) of the trajectories of all A4; with
i << j of both bundles, upstream of the trajectories of all 21%; with ¢ > % of both bundles,
and between the upstream-bundle and downstream-bundle trajectories of all A%, with
J < 7 < k. With the variations of the root values across the respective trajectories as
noted earlier, the set of roots in the jZ zone then is

Iy = ag (f=1,...,7—1)
hy = h{ (=7 ...,k—1) (19)
hy = @1,441 (¢=+#k,...,n—1I)

and, as conditions (x0) show, only species 7, .. .,. are present in the zone. The concen-
trations of these species can be calculated from eqns. (14) or (15), which give, with the
appropriate substitutions,

/»--1
Ny = H(hi —a1) T—.‘ (ct1e —az)
Leif t:.:l
L =7, R
s =7,k (20)
I
Y= H(lzf au) E (7717 - 717)
{ef Tl

Boundary velocities

The adjusted velocities of all boundaries can be calculated with equal ease from
the H-function roots of the initial mixture. All that is needed is the substitution of the
appropriate root values into the general equation (16). FFor the upstream trajectory
bundle, generated by the composition step at the rear of the uniform initial band, one
finds that the adjusted velocity of the variation 4% of the arbitary root Az at the zone
jk (i.e., between the Ahy—, and A%y trajectories of the downstream bundle) is

== H hf/au) (ZI)

Te=f
Similarly, one finds for the adjusted velocity of the variation A%; of the downstream

bundle at the jk zone (z.c., between the Akg—, and Ak, trajectories of the upstream
bundle) :

u, = ﬂ (711°) s 141) (22)

. As Fig. 4 has shown, the 4/, trajectory of the upper bundle crosses, in this
sequence, those of A%, Ah,, ..., Ahg-y of the lower bundle, and the A%, trajectory
of the lower bundle crosses, in this sequence, those of Aky—y, Altp—s, ..., Alty,.1 of the
upper bundle. Accordingly, the products in eqns. (21) and (22) lose one of their factors
hi°letyy, Bolletys; - .. and hp°-afayn, Pnl-2/ci,n-1, ... with each successive cross-over.
Since condition (9) requires ‘

Izif’/al,i'+1 < I << 1®fens (¢?=1, ..., 0—1) (23)
J. Chvomatog., 46 (1970) 1-28 - |



EQUILIBRIUM THIZORY TFOR RARE-EARTHS BY DISPLACEMENT DEVELOPMENT I1

the adjusted velocities of all boundaries of the upper bundle are larger than unity and
decrease with each cross-over, whereas those of the lower bundle are all smaller than
unity and increase with each cross-over. The adjusted velocity becomes unity when
the two Ak trajectories (or 47y trajectories) of the two bundles finally merge.

Resolution distances and times

A glance at the distance-time diagram reveals that the zone j% is the last and
farthest downstream to contain species 7 and % in the presence of one another. The
development distance (¢.c., bed length) and adjusted time, 2y and 7y, required for
the resolution of these two species are thus given as the z and 7 coordinate values of
the point at which this zone disappears, that is, of the “southeast’’ corner of the zone
in the distance~-time diagram. Given the composition of the initial mixture and the
width of its band, all resolution distances and times can thus be calculated in a straight-
forward manner by construction of the trajectory grid from the given points of origin
of the bundles with the use of eqns. (21) and (22) for the trajectory slopes. The results
of this calculation are listed in Table I. Derivations are provided in the Appendix.

Table I gives formulas for two types of operation, namely, development of
a uniform initial band as in Figs. 1 and 2, and operation with chelation of the mixture
prior to its introduction into a column initially loaded with only the retaining ion, as

ADJUSTED TIME

0 1 2 T/Az
Y T T | T
1,2,3,4
-
)
A “
<A
1 &4
v
b4 D
b
s} “v
o @
l ‘v
1
2
| 3
2 4
z/Az

IFig. 5. Distance~-time diagram for quaternary scparation with chelation prior to loading. (Cal-
culated for same original mixture and separation factors as in I¥ig, 2.)
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TABLE I

DISTANCES AND ADJUSTED TIMES FOR RESOLUTION
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Developnent of uniform initial band

Operation with chelation priov to loading

Binary separations

Uz
Sy == Az Zyp =
Ctm -1
I =]
Typ == (“'—'—‘—"‘ + Ve ) Az Tip ==
Qypg— 1
Ternary separations
Uyg
213 = ————AZ <1 S
als'— I
N Y1° 4 @aa¥e® - ay3ys°
Tlﬂ = AZ Tu’ =
ala El
Clypllyg(fe® — 1)
3o = Z1g =
fg® (@yg — 1) (€35 — 1)
0205 (/2g° — 1) {
112 == ZYe T]-: =
h1®he®(et1p — 1) (4153 — 1)
Qyp (et — 721°)
2y = (I + — Az Zpg =
Ry (0tgg — 1) (@13 — Ctq2)
Cyattyg(0tya — /1,°) Nz ‘t
sy = 1z 23 =
11%hs° (ctyy — 1) (g5 — €tya)
Multicomponent separations
Cin n=1 gy (g — 1)
Zeg == e T o Az g =
‘ Aip— 1 gmpe V% (cta;— 1)
k=2,...,m
1 n cyt n—1 /Ho—l
Tk = —— T (-———o——-—) 1 (-——-—-——-——) Az Tip =
Cin — 1 ez \N%a ) pmpe N o —1
( oy =1 o {eern — 24°)
= |1 4+ ——ie— gy ——— | [ Az gy, =
Cin—cti) ¢=1 NI (tan — aar)
j=1,...,n—1 3
1 o\ I gy —1®
Tin = 7 | == ) i (———-——-\) Az Tin =
L Qi — W1 f=2 Rt/ 4= \tn1— gy
s (43712473 1 1 1 1
f=71,.,..,n=1 | syp=——--—|{— — 23 kw1 =t
Uy g — g oty hy® /z/ -1 ey
ki=2,..,m 1
I
n Typ = e [(M2° — 1)) Ty 41~ (C1n — %) Tyin, & — (Br® — %) Tj-1,h041]
F<k 1k — U1y

( 1

alo -
2

(‘tm -1

+ cyaia®

4= ¥y

8 ©
alar‘,l

[+
Az
Uyg— I

g

Az

a1a ~— X

Iy °(Ng° —1
1 2 ) Z]-’:

(uya— 1) (13— 1)
I —1

(I + (ct1p—7) (ct13— 1)

)Az

f12° (cty9 — 114°)

- Az
(cty3 — 1) (@19 — Ct12)
tyy (Ctyg — 74°) Az
(ceyg — 1) (ct1q — @yg)
n° k=1 ,J,°\ n=1 s % —1
_— ( ) ™7 (—————-——)A
Uin —1I) to2 N1/ gmpe \App—1

1 n=1 s h,°—1 ‘
[r+ — (=) 42
Uin — T =i a1t —1I

) 5‘]__1". —

hjo J— Cin — hto
h Az
Clyn — €11

Clyn — C1f  feat
(2477 J-1 in — Ri°
— ( Az
Qin — 1 (=1 Ny — 0y

(G = ) -0
el el -7 B I SR |
/L}O.-l /I/.:° /

S

Az = width of rare-earth
ceqn. (20)}; ey = Ya¥a/VeYs

J. Chromatog., 46 (1970)
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EQUILIBRIUM THEORY FOR RARE-EARTHS BY DISPLACEMENT DEVELOPMENT I3

in I'ig. 5. In general, the latter type of operation requires a smaller column length but
a longer adjusted time for resolution of any given pair of species. Also, the “critical”’
pair, z.e., that with the longest resolution distance or time, is not necessarily the same
for the two types of operation.

FFor binary and ternary separations the formulas in Table I are explicit in terms
of the initial composition of the mixture or its H-function roots, which are readily
calculated from the composition by eqn. (13). IFor separations of higher order, explicit
formulas can be given but are impractically lengthy; here Table I only lists those for
resolution from species 1 and from species 72 and gives a recursion formula for cal-
culating z;x (or 75%) from previously calculated 2y, 4.1, 2j—1,%, and z;, 1 (or correspond-
ing 7 values). The equations for the resolution distances in binary and ternary sepa-
rations are identical with, or equivalent to, those given by SILLEN® and SpEDDING, Po-
WELL ¢t al.%%-Y, although the implicit ternary equations of the latter appear more com-
plex since they lack the economy provided by the H-function roots. (All but the last
of these publications, ref. g, were confined to development of a uniform initial band.)

The initial condition in development of a uniform band calls for a comment.
The formulas in Table I are calculated with the premise that no development takes
place at any location z prior to that location’s zero of adjusted time. That is, develop-
ment at any z is presunied to start with a time lag z/u relative to the top of the bed
(see eqn. (3), solved for ¢ at T = o). This time lag is exactly the time needed for a non-
sorbable agent to travel from the top to the location z. Accordingly, the premise is
geared to operation with a column initially free of any development agent and with
development by an agent essentially excluded by the ion exchanger. This corresponds
closely to the conditions in practical separations.

Another point needing consideration is that the composition of the original
rare-earth mixture provides the initial values ¥,°, ..., ¥,,°in development of a uniform
presorbed band, but provides the influent values «,°, ..., x,° in operation with che-
lation prior to loading. In the first case, the mixture is sorbed nonselectively in the
absence of the chelating agent to give an ion-exchanger composition equal to that of
the original mixture; as the front of the chclating anion penetrates the band at v = o,
slight and selective desorption occurs, to give a liquid-phase composition in equilibrium
with, and differing from, the essentially unchanged ion-exchanger compomtmn In
contrast, in the second case, the mixture enters the column at its composition «,°,. ..,
xx° with the chelating agent providing selective sorption, so that an ion-exchanger
composition in equilibrium with, and differing from, this liquid-phase composition is
established at the top of the bed. Accordingly, when calculating the set of 7;° from the
known composition of the original mixture, this composition should be taken as
¥1° « .., ¥° in development of a uniform initial band, and as x,° ..., x,° in
operation with chelation prior to loading.

The iterative calculation of the resolution distances and times for mixtures with
many components, although straightforward, is lengthy if a computer is not available.
However, if the establishment of safe design limits is sufficient, the following inequali-
ties can be used. [For development of a uniform initial band:

b~y
20 < 1/aas Az Tip < 1/hy° H (a”)zl (24)
I I/a]_j—I/alk ’ I I/alj—'I/allg 'l-j+1 /u
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and for operation with chelation prior to loading:

k-1 )
. h4° hi® 73 :
e < — | | ( L ) Az, Tie < Az (25)
a1 — Ay fagb (257 U1 — A1y

[The right-hand sides of these inequalities are calculated with constant values of the
velocities of A4; and A4k equalling the actual values at the zone j&, and therefore
constitute upper limits because the actual velocity difference is larger initially and
decreases with every crossing of other trajectories (see Fig. 6).]

The equations for the two types of operation reflect certain symmetry properties,
more fully discussed in the original theory?: the equations for one type can be obtained
from those of the other by interchange of x and ¥ and of z and =, replacement ofu,”,
and ¢ by their recxprocals and change of the indices ¢ for the species to #4-1—7 and
for roots to n—=<.

Notation in the orviginal theory

A slightly different notation has been used here than in the original theory??,
where, to be consistent with the treatment of other kinds of operation, the development
ion is species 1, the species of the mixture are 2, ..., #—1I, and the retaining ion is 7.
An m-component separation then appears as an (m--2)-component problem and,

ADJUSTED TIME —

<— DISTANCE

z> 2
J
> Tk \

Fig. 6. Calculatlon of upper limits of resolution distances and times. Solid lines arc actual
tm]ectorlcs, broken lines are fictitious linear trajectories used to calculate inequalities (scc
eqn. 25).
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compared with the present treatment, all roots and separation factors (now relative to
the development ion) are larger by a factor equalling the separation factor of the
development ion and the first ion of the mixture. The invariance to the properties of
the development and retaining ions and the attendant possibility of simplifying the
notation as done here are discussed in the original.

COMPUTATION FFROM OPERATING VARIABLES

The theory outlined above and the computer program RAREARTH!! are in terms
of normalized and adjusted variables. Practical application will require conversion
from and to actual physical variables such as volumetric flow rate, column properties,
ion-exchange capacity, true distances and times for resolution, etc.

In order to calculate normalized resolution distances and times (Z and 7, in
units of band width 4z) as well as adjusted boundary velocities u, and compositions
Xy, oe . Xy OT ¥y, o .., ¥y in the transient pattern, either by hand or with the program
RAREARTH, only the separation factors «;¢ and the fractional rare-earth concentrations
in the original mixture are needed. As has been discussed by POWELL AND SPEDDING4,
the separation factors in rare-earth separations by ion exchange are essentially given
by the ratios of the stability constants of the complexes formed with the development
agent, stronger complexing resulting in lesser affinity for the resin. At least for standard
development agents such as ethylenediaminetetraacetic acid (EDTA), the separation
factors can thus be calculated from tabulated stability constants®. The fractional rare-
earth concentrations in the original mixture are taken as v,° ..., ¥,° in develop-
ment of a uniformly loaded initial band, and as x,° ..., a,° in operation with
chelation prior to loading.

Because ion exchange with dilute solutions is essentially stoichiometric and
because the exchange at the front and rear of the rare-earth band is complete, 7.e.,
involves complete conversion of the resin to and from the rare-earth form, the total
concentration (in mequiv./cm? liquid phase) is the same in the influent (development
agent), within the band, and in the effluent. The conversion of fractional liquid-phase
concentrations x; in the rare-earth band or effluent into actual concentrations ¢; (in
mequiv./cm? liquid phase) thus is

€t = C Xy (mequiv./cm?3 liquid phase) (20)

where ¢ is the concentration of the development agent (in these units). The conversion
to mequiv./cm?® of column requires multiplication with the fractional intraparticle
void volume, ¢:

C = e&c (mequiv./cm? column) (27)

The ion-exchange capacity (in mequiv./cm® of column) can be used directly as
the total concentration, C, of rare earths in the ion exchanger. The conversion of the
fractional concentrations v; to any desired units then is obvious.

The conversion of the respective normalized variables to true resolution distances
and times and truc boundary velocities requires, in addition to C and C, a knowledge
of the linear flow rate, #,, and the (adjusted) band width 4z, The linear flow rate is the

* With the possible exception of yttrium, for which the separation factor may have to be
clctcrnnm.cl experimentally.
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volumetric flow rate 7 (in cm?3/sec) divided by the cross-sectional area not occupied
by the resin:

'z:to = V/eS (cm/sec) | (28)

where S is the cross-sectional area of the column (in cm?). The quantity 4z is the width
of the rare-earth band measured along any line of constant = in the distance-time
diagram. The true width (Z.e., measured along a line of constant true time, ¢) of the
band equals the total rare-earth charge, Q (in mequiv.), divided by the overall concen-
trationC -~ C (totalnumber of mequiv. per cm3 column) and the cross-sectional area, S
Conversion with eqn. (3) shows that the width along a line of constant = then is

Az = Q/CS (cm) (29)

The normalized resolution distances Z = z/4zand T = v/4z, calculated by hand
or obtained as output of the program RAREARTH, can now be converted into true dis-
tances and times. For distances, from eqn. (29),

z=A27 = QZ|CS (cm) | (30)
and for times, with eqns. (3) and (27) to (30).
1 (C _ eSdz (C .. N Q (T | Z
t= e (Trte) = (T +2) == (G + ) e (D)

Moreover, as can be shown from eqn. (3), the conversion of the adjusted boundary
velocities, uy, into true velocities 4 is

g _ V/eS
1+ C/Cuy 14 Clecuy

A slight complication arises in operation with chelation prior to loading if
the flow rate and concentration have different values, #,” and C’ (corresponding to 1’
and ¢'), during loading than during development. The calculation of the normalized
variables (xy, y4, ug, Z, T) is not affected, but some of the conversions to true physical
variables are. The true time for loading will be

= Q/c’'V'  (sec) (33)

The conversion from adjusted or normalized time to true time (counted from the start
of loading) then is

(cm/sec) (32)

Uy =

for¢ < A t = 7 = 07
o 1%

(CICYr + = eQ T V4
(e + %)
(corresponding to
T <1 —ec’Z|C)

fordt' <t < At —}- = t= At 4 2

4o U

(corresponding to

r—ec’ZIC < T < 1) =0 [— (_/(:? — I——z)] (34)
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z 4+ (C[C) (z —z)

fort = A" - £ bo== A8
'I/‘u ’l{'()
'Tes ding to 1" = . -
(corresponding to " = 1) . [ s (f_ 1 ——1)]
by v \C &c

In addition, the conversions to true wvelocities and concentrations are affected as
follows: for ¢ << A¢ (corresponding to 7' << 1 —e&c’ Z/C), u,’ (or 17') is to be substituted
for u, (or V) in eqn. (32), and for ¢ << AY + z[u, (corresponding to 7" < 1), ¢’ and C’
are to be substituted for ¢ and C, respectively, in eqns. (26) and (32).

Therelatively complex conversion to true time by eqns. (34) is a consequence of
the fact that a flow-rate variation is instantaneously propagated through the column,
the liquid being virtually incompressible, whereas a concentration variation in the
liquid ts propagated only at the rate of liquid-phase flow (assuming that the concen-
tration C in the ion exchanger is not appreciably changed). As is illustrated in FFig. 7,
the flow rate is %’ to the left of the line ¢ = 4¢’, and is u, to the right of this line, while
the concentration is C’ to the left of the line ¢ = A¢ + z/u, (which is also the line
T = 1 and T = 42z), and is C to the right of this line. This leads to the three regions,
separated by the two lines, and each covered by one of the three eqns. (34). (IFor

TIME——>

At

RARE EARTH
BAND

<— DISTANCE

=]

FLOW RATE ug

\
FLOW RATE \
ul

CONC. C’ A CONCENTRATION C

—

Tfig. 7. Chelate loading with different low rate and concentration (schematic). Changes in slope
of band front correspond to loading with [low rate and concentration both twice as high as for
development.

J. Clhiromatoz., 46 (1070) 1—28



18 F. HELFFERICH, D. B. JAMES"

clarity, Tig. 7 greatly exaggerates the angle between the lines ¢t = ¢ and ¢ = At +
z[1tg.) ‘

- An unexpected result is that the true distances (e.g., of resolution) are invariant
to changes of flow rate and concentration, since the conversion factor Az, according
to eqn. (29), is independent of these variables. This holds for development of a uniform
initial band as well™.

It has been tacitly implied above that the separation factors are not altered
by the concentration variation. If they are, an exact calculation, while entirely
feasible, becomes quite complex. The computation must then be carried to v = A4z
(corresponding to T = 1) with the separation factors pertaining to ¢’, and the com-
position profile along v = 4z must then be used as the initial condition for a new
calculation with the factors pertaining to c. In general, all boundaries existing at
T = Az, being coherent under the old set of separation factors, will be noncoherent
under the new set and will therefore each give rise to a new set of coherent boundaries.
This complication exceeds the faculties of the RAREARTH program. IFortunately, the
actual concentration dependence of the separation factors of the rare earths is usually
not larger than the uncertainty of their measurement, except possibly for lanthanide-
yttrium systems. Also, the design is usually dictated by one of the longer resolution
distances and times, and these are not much affected by somewhat different separation
factors during loading: for species hard to separate, the loading time is but a small
fraction of the resolution time and gives very little segregation. IFor most practical
purposes, different separation factors during loading can therefore by ignored.

Another complication not covered here arises if one or several front or rear
portions of the incompletely developed band are cut off at some intermediate stage or
stages. Boundary trajectories that lead into the discarded portion will then be shifted,
at the cut-off distance, to the cut-off point without change in slope, and none of the
transient compositions will be altered. The detailed theory for this type of operation,
which is of some practical importance, will be presented in a separate publication.

A PRACTICAL EXAMPLE

The practical application of the theory will be illustrated by the calculations
for an ion-exchange separation of the rare earths of euxenite by displacement develop-
ment with ethylenediaminetetraacetic acid (EDTA). A typical fractional composition
of the fifteen rare earths of euxenite, a mineral rich in the yttrium earths, is shown in
Table II. Table II also lists the separation factors relative to lanthanum (species 1)

in the presence of EDTA as calculated from the EDTA stability constants given by
WHEELWRIGHT ¢t al.l3,

* The independence in the range C <« € is, of course, well known from simpler theories.
What is shown here is that it extends beyond this range. A compensation of effects is involved,
As is known from gencral chromatographic theory, the separation efficiency lessens with' in-
creasing mobile-phasc concentration because the relative migration rates of the molecules of the
species become more similar (e.g., sec ref. r2). In the present case, the numerical values of the
resolution distances expressed in units of band length (at constant truc time, as uscd by PoweLL
et al\) indeed increase, but this turns out to be compensated by the shorter length of the band,

requiring‘lesser dista.uccs of relocation within the band upon separation, so that the true distances
in cm are invariant.

J. Chromatog., 46 (1970) 1—28 -
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TABLIZ1L

TYPICAL RARE-EARTH COMPOSITION OF EUXENITE AND SEPARATION FACTORS OF ILDTA coMPLEXES

I'ndex LElewent Mole Separation
mber Sraction Sfactor
(737

1 Lanthanum 0.006 (1.000)
2 Cerium 0.015 4.68
3 Prascodymium 0.002 10,72
4 Nceodymium 0.008 21,88
5 Samarium 0.010 67.01
6 Europium 0.001 03.33
7 Gadolinium 0.035 95.50
8 Terbium 0.016 4571
s) Yttrium 0.622 691,38

10 Dysprosium. 0.095 1,072

11 Holmium 0.035 3,890

12 Lirbium 0.0090 0,701

13 Thulium 0.015 22,350

14 Ytterbium 0.042 46,770

15 Lutcetium 0.008 85,110

IFor a preparative separation on pilot-plant scale with a general-purpose strong-
acid cation-exchange resin, realistic operating variables would be about as follows:

Amount of rare earths Q = 20,000 mequiv.
Cross-sectional area of column S = 100 cm?

IFfractional intraparticle void volume & = o.4 .
Ton-exchange capacity C = 2.0 mequiv./cm? column
Concentration of development agent ¢ = 0.10 mequiv./cm? solution
Volumetric flow rate I/ = 2.0 cm?/sec

Under these conditions, the band width is 100 cm. (Because ¢ « C, there is virtually
no difference between the widths measured along lines of constant ¢ and of constant ,
the “adjustment’’ of r by — z in eqn. (3) being negligible.) The time required to displace
the band by a distance equal to its own length is ¢ = Q/c}” = 100,000 sec = 27.8 h.

Distance—time diagrams for development of a uniformly loaded initial band and
for operation with chelation prior to loading, calculated with the program RAREARTH
from the data in Table II, are shown in Ifigs. 8§ and g. Scales of true distance and time
have been added in accordance with the operating conditions listed above. IFor oper-
ation with prior chelation, the true-time scale presumes that the concentration and
flow rate are the same for loading as for development. IYor reasons of scale, the diagrams
do not extend to the point of resolution of gadolinium from europium, at Z = 2.044,
1" = 2.60r1 for development of a uniform initial band, and at Z == 1.661, 7" = 2.619
for operation with prior chelation.

A comparison of the distance-time diagrams for the two types of operation is
instructive. In general, development of a uniform initial band requires longer distances
but shorter times for resolution. (It should be noted, however, that the time required
for loading the initial band is not included!) Development of a uniform band tends to
give long resolution distances particularly for the species of low affinity for the resin
(¢.c., species with a high index number), and operation with prior chelation tends to
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give long resolution times particularly for species with high affinity (low index number).
Thus, there is incentive to switch from the conventional development of a uniform
band to chelated loading if excessive column length is required to resolve a critical
pair of low-affinity species. '

Another feature that comes out clearly in the example in I'igs. 8 and ¢ is that
resolution of a major component from its neighbors tends to require long distances
and times even if the respective separation factors are favorable. Thus resolution of
the main component, yttrium (mole fraction 0.622), from terbium in development of
a uniform band, and from dysprosium in operation with prior chelation, requires
almost as long a distance and time as that of the pair europium-gadolinium, although
the separation factors agpp,y = I.5I and ay,py = I.55 are significantly larger than
Xzu,Gd = I1.023. ‘

APPENDIX

Root variations across coherent boundaries

The rule that only one H-function root varies across any coherent boundary
can be derived, for displacement development, as follows. According to eqn. (5), the
adjusted velocity of a concentration step of an arbitrary species 7, regardless of the
behavior of other species, is

le — lel

gy P (A.1)
where primes and double primes refer to the two sides of the step. Expressing the x;
and yy in terms of /; by means of eqns. (14) and (r5) one finds

n—1 n—1
[ ] —eny) = ] O —any)
ha = S : (A-2)
[ Joue ]_J-[(ht"“aw)/hi']—r\.[(""i”—‘alj)//li“.lll
1=1 1i=1 t=1
i

The condition of coherence is that u,, and therefore the right-hand side of eqn. (A.2),
will have the same value for all species j == 1, ..., 7. The right-hand side of this
equation will meet this condition if, and only if, all features distinguishing 7 from other
species disappear. IFor this to be the case, all products in the numerator as well as in
the denominator must have all factors but one in common. In view of the limits
imposed on the root values by condition (g), this requires

hi = hy'' for all ¢ s & (A.3)

where & may be any number 1, ..., #—1I. That is, all roots but one, /%, must have the
same value on both sides of the step. (At least one root must vary across the step,
which otherwise would be nonexistent.) With this restriction, eqn. (A.2) is readily
shown to reduce to eqn. (x6). ‘
 This abbreviated proof presupposes that: (1) the step remains sharp, and (2)
equalities ;'3 = hy'' or by’ = hy'' -1, admitted by condition (9), do not occur.
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ADJUSTED TIME —=

Q (zg: Tg)

(ZA ] TA)

Z-ZB

z-zA

(z, T)

«— DISTANCE

T-T8

T=Tp

Fig. 1o. Trajectories for triangle formula, (From FeLrrericH AND KLEiN1t)

Calculation of vesolution dislances and times
The coordinates (z, ) of intersection of two linear trajectories A and B, with
points of origin (za, Ta) and (zp, Ti) and slopes ua and ug, are calculated as follows.
As T'ig. 10 shows:
Z—ZA zZ-—21
upg = ——— and up = ——= (A.q)
T—TA T—TB
Solving for T and z one finds
UpTB—UATA — 2B+ 2ZA
up—Uua ’
(A.5)

z2 =27+ (T—7TA)UA Or =2z -+ (r—TB)up

Appropriate values of uy and ug can be substituted by means of eqns. (21) and (22).
The "triangle formula’’ (A.s5) can then be used to calculate (24, T12n), for which the
substitutions are

=z, TA=0, 2Zp=0, TB=0 ' (A.G)
for development of a uniform initial band, and
ZA = O, TA = O, zZp = 0, TR = Az (A7)

for operation with chelation before loading. (Note that the band width in the 7 direction
is also 4z, since the slope of the trajectories of the front and rear boundaries of the band
is unity.) Further values (2, T1x) (8 = n—1,..., 2) and (2, Tsn) (j = 2,...,n—1I) are
then calculated with the triangle formula as recursion formula, with substitution of
the previously calculated (zy4:1, T1,41) TOr (2A, TA), OF (Zj—1,m, Ty—1,u) TOr (2B, TB). IOr
the simpler expressions in binary and ternary separations, the root or roots can be
expressed in terms of x; or y; by means of eqns. (12) or (13); this has been done in
Table I. ‘
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ADJUSTED TIME —

(Z' 17k+17 TJ-'I k+1)

~— DISTANCE

IFig. 11. T'rajectories for four-point formula. (From HELFFERICH AND KLEINI)

In principle, the various 2;; and 7y (2 < j << £ < n—1) in separations of four or
more species can also be calculated with eqn. (A.5) as recursion formula. However,
the “four-point’’ formulas in Table I, which allow sets of z;z and of 74 to be generated
independently of one another are more convenient. The formula for calculating z
from 2zy-1,k, 27,41, is obtained if the equations for the slopes of the four trajectories
bounding the zone jk

-1
21— 24, k+1 ’ N°
T T}, k1 ; dy, z+1
L=
k=1 o
2y p—24_1,k& /) .
ZE— Ak T2 (A.8)
Tk T4,k . ¢
'uj
Zf kb1 = 1 k1 g
Ti k41— TY-1,k+1 » a1t
Tz
k=1
21,k —Zj—1.k+1 ’—“'_{zi“__
Tj-1 bk —Tj-1.k+1 . 41,41
fmf=1

(see TFig. 11) and the continuity condition

(Tse — Tr,k41) — (Tik — Ty—a.6) + (Trokp1 — Timt,ks1)
— (Ty—1,6 — Ty—1,k41) = O (A.9)
are solved for the five unknowns, that is, for z;x and the four time differences wppenrmg

in eqns. (A.8) and (A.9). The derivation of the formula for 7 is analogous.
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SYMBOLS

A, A, B, B
C
c’

C¢
C

CI

Tif
h®, %4°, v¢°

', V'

Iy, ;w', w’

/l-,, y '\',;

ACi, ACi, Ay,
Axg, Ay

A

Az

THEORY FOR RARE-LEARTHS BY DISPLACEMENT DEVELOPMENT 27

parameters in eqn. (13)

concentration of development agent (mequiv./cm? solution)
total rare-earth concentration during loading of chelated mixture

(mequiv./cm3 solution)

concentration of rare earth ¢ in liquid plmse in rare-earth band
(mequiv./cm? liquid phase)
total rare-earth concentration in liquid phase in rare-earth band

(mequiv./ecm? column)

= &c¢’ (mequiv./cm?® column)
ion-exchange capacity (mequiv./cm?® column)
argument of the H-function, eqns. (7) and (8S)

+'th root of H-function

number of species in original mixture
total amount of rare earths (mequiv.)
cross-sectional area of column (cm?)

time (sec)

= t/dz

linear flow rate (cm/sec)

true velocity of boundary (cm/sec)
adjusted velocity of boundary
volumetric flow rate (cm?/sec)

fractional liquid-phase concentration of

= z/dz

rare earth ¢
fractional resin-phase concentration of rare earth 7

distance from top of bed (cm)
resolution distance of rare earths ¢ and 7 cm

separation factor of rare earths 7 and 7 cm

adjusted time

adjusted resolution time of rare earths « and 7 cm
values of /4, vy, ¥¢ in uniform initial band or in chelated mixture being

loaded

values of #, and IV during loading of chelated mixture
values of A4, x4, V¢ on upstream sice of boundary
values of /iy, x¢, ¢ on downstream side of boundary

variation of Cq, Cy, I, ¥4, ¥4 across boundary
time required for loading of chelated mixture (sec)
adjusted band width (cm)
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