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CHROM. 4405 

AN EQUILII3RIUM THEORY FOR RARE-EARTH SEPARATION 13Y 
DISI~LACEMENT DEVELOPMENT 

A general ccluil.ilxium tileory of cllroll~atograpl~y is applied to the separation of 
rare cartlis by displacement clevcloptnent on a cation exchanger. The essential prcniises 
are local equilibrium, uniform sorbent properties, plug flow, absence of asial diffusion, 
stoichion~etric escliange, and constant separation factors. Both development of a 
preadsorbed uniform band with a chelating agent and operation with chelation prior 
to loading are considered. The theory yielcls the distances and times requirecl for 
resolution of any component from any other was well as the mobile-phase and station- 
ary phase compositions at any point and time during development. Application of the 
theory to the separation of a fifteen-coniponcnt rare-earth niineral, euxenite, illustrates 
the method. 

IN-I’RODUC’I’ION 

A highly successful process for preparative conlmercial separation of rare earths 
in ton quantities with high purity is clisplacenient development with a chelating agent 
on a cation esclianger1v2, The cllaracteristic ancl well-known features of this type of 
separation are that the mixture to be separated travels as a band of constant lvidth, 
being displaced by a chelating development agent and itself displacing a retaining 
agent with which the column was presaturated; on its way through the column (or 
through a number of colun~ns in series) the species within the band sort thenxelves 
out into individual zones of one species each, which all travel at the same rate and 
follow one another without interval. In practice, finite mass-transfer rates and un- 
avoidable disturbances cause some overlap between the final zonds, btit under the 
simplifying premises usually employed the theory gives ideally sharp boundaries 
between the zones. A typical operation is with an an7rllonium-EDTA buffer as the 
development agent on a strong-acid cation eschanger with Cu2+ as the retaining ion, 
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as developed by SPEDDING AND POWELL and their associates l13s4, to whose publications 
we refere for chemical mechanism, equipment, and practical details. 

The development behavior is illustrated in Fig. I for the separation of a pre- 
adsorbed uniform band of a binary misture. As development proceeds, the zone having 
the composition of the original misture shrinks and eventually disappears, while zones 
of the two pure componentsgrow on either side, all within the traveling band of constant 
length. The broken lines, superimposed on the column pictures, trace the traveling 
boundaries between the zones of different compositions. 

Fig. I. Separation of binary misturc 
~3URlCI~OLDl3R".) 

TIME - 

For optimum design, a knowledge of the distance and time a given misture must 
travel to be resolved is obviously of key importance. Previous theoretical treatments, 
by SILL~N~ and SPEDDING, POWELL et al. 4~0--D, have given solutions for separations of 
binary and ternary mixtures but are not readily extended to more comples cases. A 
recent general theory of multicomponent chromatography under arbitrary initial and 
influent conditionslo, however, comprises displacement development as a special 
case and can be applied to provide the desired extension to any number of compo- 
nents, as will be shown here. 

Computations with the formulas which follow are straightforward but become 
lengthy for systems with many components. For these a computer program that 
tabulates and plots the results has been made available 11. The results calculated by 
this program for a fifteen-component separation will be shown here as an esample. 

Space limitations forbid us to give more than the mkre outlines of derivations 
and proofs. For details reference to the original theorylO must be made. 

C?b339nalog., 46 (1970) 1-2s 



The usual assumptions of “equilibrium theories” of chron~atography are made, 
namely, existence of local equilibrium at any point and time, uniform sorbent prop- 
erties, plug flow, and absence of axial diffusion. We assume, moreover, that ion 
exchange is stoichiometric (i.e., without. change in total -number of equivalents in 
either phase) and that the separation factors are constant. Volume changes of the ion 
e.xchanger are disregarded, and ,for convenience we only consider operations with a 
column of uniform cross section and with constant composition and flow rate of the 
development agent. These assun+ions are essentially the same as in the earlier theore- 
tical treatments, except that the premise of low solution concentration relative to the 
concentration in the ion exchanger, made by SPEIIDING, POWELL et al., is not needed. 

Theories based on these premises are unrealistic in that they yield ideally sharp 
boundaries between the various zones of clifferent compositions, boundaries that in 
actual operation are slightly di.ffuse. However, since practical rare-earth separations 
are conducted so that cliffuse overlaps between zones are sn~all compared to the band 
and zone widths, this idealization does not significantly impair the utility of the 
theory. 

We shall consicler the separation of an arbitrary ?t-component mixture. The 
species are numbered I, 2, . . . , 12 in ,the order of decreasing affinity for the ion exchanger 
in the presence of the chelating agent. Concentrations are given as equivalent ionic 
fractions xg in the liquid andyi in the ion esclianger (i = 1, . . . ,u). l’llus, by clefinition 

at any point in the band. Separation factors a,f relative to the reference species I are 
definecl as 

(i = I,. . .,12) (2) 

(According to Powm~ AND SPEDDING *, these factors are virtually equal to the ratios 
of the stability constants of the respective chelates, chelation being the almost ex- 
clusive cause of selectivity.) 

For niatlieniatical convenience ancl greater generality, the derivations make 
use of a normalized and adjusted time variable, z, defined as 

z E (hr.” - z)C/C (3) 

where t is the true time (say, in sccoiicls), q/0 is the linear liquid flow rate (in cni/sec), 
z is the distance from the top of the bed (in cm), and C and e are the total concentrzktions 
(sums of concentrations of all components, in ionic dquivalents per unit volume of 
column) in the liquid and ion esclianger, respectively. (The “acljustmcnt” by -2 in 
eqn. (3). is the niathernatically most convenient way of removing the premise C < c’ 
adopted in most earlier theories. Note that the adjusted time has the dimension of a 
length.) 
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The adjusted velocity, uStI, of a boundary between zones of different compositions 
is defined as 

u. I 3 azlad,, (4) 

t\*licre A sjmbolizes the boundary. ‘I’lle definition oft has been chosen so that tile acl- 
justed velocity of tllc rare-earth bancl (i.e., of its front and rear boundaries) is unity. 

** . . 

OU?‘I,INlS 017 Tlll~Ol<Y 

The derivations make USC of geometrical constructions in “distance-time 
diagrams”, which show the trajectories of bcJUnCkuieS between zones of different 
compositions. Iior easier niental translation into and frcmi actual column operation, 
which is usually downflow, distance from the top of the becl is plottecl downward ; wit11 
the column pictures removed, Fig. I would thus immediately give a distance-time 
diagran!. A diagram for a four-component case is sllown in Fig. 2. The resolution 
distances and times, ultimately sought by the theory, are the coorclinate values of the 
points at which trajectories intersect, and can thus be calculatecl once tlic velocities 
of the boundaries (trajectory slolles) are l~nown. 

A simple material-l~alance argument (amount entering minus amount leaving 
a column segment ecluals ilet cllcmge in content of segment), the starting point of 
theory in alinost any text on cllroni~~to~rapllSI, shows that a concentration step of an 
arbitrary species ?: advances at tlm true velocity ,~~,,/lCf/(dCi + A cfd), where AC{ and 
LlCi are the concentration differences in the liquicl and ion exchanger, respectively, 
across the step. (The usual ecluations differ in that they involve the fractional phase 
volumes; these cancel if, as is clone here, tlic concentrations are espressecl per unit 
volume of column rather than of the rcs1xxtivc phnsc.) Conversion to adjusted velocity 
ancl ecluivalcnt fractions gives 

“. 

Ud = A .v&lys (5) 

(where Axr and A_v.I are the differences across the step), as can be verified by eqns. (3) 
and (4). This relation holds for any species i. 

In nlulticoliiponent systems, a bounclary between zones of different coinlx~sition 
usually involves concentration variations of any number of species. If the boundary 
is to travel without splitting up into separate concentration steps, it is evident that 
eqn. (5) nmst n$$l_v to nh? sfiechs si~~c~r.ltn?acozcsl_2r, since the concentration steps of 
different species woulcl otherwise travel at clifferent velocities. Accorclingly: 

(6) 

for any given boundary. In the general theory 10, boundaries that meet tllis crite- 
rion are called cohmmk, am1 it is sllown that ancl how coherent boundaries evolve 
from any arbitrary initial conclitions. In tile present case, tile two initial conil)osition 



G I?. HJ~I,FI~EIZICH, I). B. JAMBS 

steps, at tlio front and rear of the uniform initial band, arc noncoherent and ‘break up 
into sets of coherent boundaries, Similarly, where two coherent boundaries cross, 
there is for an instant a noncoherent step, which immecliately breaks up again into 
two coherent boundaries. All earlier theories have impliecl without proof that coherent 
boundaries are indeed formed.’ 

Except for the zone of the original mixture and those at tile estreme rear and 
front of the band, where only species I and CIZ, respectively, are present, the various 
transient compositions are not known beforehand. Eqn. (5) by itself is therefore not 
sufficient to.calctilate boundary velocities. This difficulty is best overcome with the 
so-called Iz-tmnsformation, by which the set of composition variables x1,. . . ,xql 01 

yl,. . . ,yn is replaced by a new set h,, . . . ,/z~~-.~. [Only qz- I variables are needed since, 
in view of eqn. (I), only n- I concentrations xf or yf can be varied independently.] 
The advantage of the new variables is that all boundary velocities ancl other quantities 
of interest can be calculated directly from the set of ha of t/u i~&inl mixture nlom, with- 
out the need for computing intermediate compositions or properties. 

The 1~ are’ definecl as the IZ- I roots in 12 (or reciprocals of the roots in I/h) of 
the so-called “H-function” : 

or 

71 

c 
i-1 

(7) 

I- ‘rL -1 

It can be readily verifiecl that conlpositions x1, , . . ,x,~ and yl, . . , ,yTL in ecluilibrium with 
one anothergive the same set of H-function roots. The roots are all real and fall into 
the intervals 

l;or e&Ii species 12 absent from the respective conlposition, the polynomial (7) 
has a “trivial root” It = qfi:. Thus 
h, = I if x1 = 0, y, = 0 

I 

h&q = c.ll$ * or f&g = alg if xi = 0, yf = 0 (I < i < 11.) (IO) 
h-1 = a17t. if xstl = 0, y,rj, = 0 

The otlxh-, nontrivial roots are more conveniently calculated from the relations 

(11) 
71. ‘IL 

obtained when eqn. (7) is divided by 
l-l 

- (I ~--a~~), or eqn. (S) by Jj (~/h-~/alp). 
3'=rl d-1 

The roots are readily found by standard numerical procedures, since the functions in 
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It are single-valued ancl monotonic l.xdwccn tllcir poles at tile various 11. = cclz. An 
example of this behavior is slx_m~n in Fig. 3. 

For two and three con~pnents, the roots can be given conveniently in an csplicit 
form. Eqn. (II), solved for h, gives for two-cotllponent compsiticrns 

and for three-conlponent compositions 

71, I,2 = .& [A & (&_._4~) ?I and jr.,,, -_ -.-.___.._G?_.. ..__.__..... 
A & (A”-4fi’) d 

(13) 

where 
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For the converse transformation, to obtain concentrations x( or yt from given 
sets of H-function roots, explicit equations can be written for any number of com- 
ponents : 

11-l 

These equations can be obtained as the solutions of the CC~IIS. (II) with It,, It,, . . . , hlL--l 

consecutively substituted for 1~ 

Profierties and belc1mi0r of Ii-f tmctio7a roots 
Two of the properties of the H-function roots, examined in detail in the general 

theory, are of special importance in the present case. The first one is that o&y olte root 
varies ~CYOSS any colzerelzt boz~mhz~y, and the second, that any boundary in the course of 
development is a root variation, propagated across the distance-time plane, that 
existed iktinlly OY was iutrothcced as an in$?uant contfiositiom clumgc. A corollary of the 
second rule is that no root valms othar than those of the initial and imjlmm? co~~tfiositions 
zi~ill OCCZCY anyzvhere at my time. An abbreviated proof of the first rule, applicable to 
the present case, is given in the Appendis, where it is also shown that the adjusted 
VdOCity Of a COherent COlllpOSitiOn step With hk: as the Wu-yhg rOOt is giVCTI by 

n-l I 71 

w> 

where hk’ and hk” are the values of I&A: on the two sides of the step. I’or the more COliiplex 
proof of the conservation properties of the roots reflectecl in the seconcl rule we must 
refer to the original theorylO. 

The two initial composition steps, at the front and rear of the uniform initial 
band, involve variations of all H-function roots and thus are noncoherent. Upon 
development they break up into sets of coherent bounclaries each involving variation 
of one root only. Within each set, the boundaries are in the sequence of increasing 
index numbers of their variable roots (seen in the direction of flow), since eqn. (IG) 

with condition (0) gives the higher velocity for the boundary with variable root of 
higher indes number. In the distance-time plane, each of the sets of bounclaries appears 
as a bundle of trajectories having a common point of origin. The trajectories of the 
two bundles cross : each trajectory of a root variation Br’zl, of the upstream bundle 
crosses all those of variations dlz,, Llh,, . . . , dh&l of the downstream bundle and 
eventually merges with that of d& of the downstream bundle; the last is a merger 
rather than a cross-over because a single coherent bounclary is fornlecl from two co- 
herent bounclaries if these involve variations of the sc1~~l.c root. The resulting,_overall 
trajectory pattern in the distance-time plane is shown schematically in Fig. 4. 

The root values for the uniform initial zone can be calculated from its com- 
position xX0, , , . , xno or ylO, . . . , y?&O from eqn. (II) and will be designated lzlO, . . . . 

.I. CItvomatog,, 4G (1970) 1-d 



Fig. 4. Pnttcrn of tt’ajoctorics in clistxncc-time plnnc (sclicmatic). (Atlaptctl fmni I-l~~vvTtl~~cIf 
AND KLRIS~".) 

i&O-g. The root values at tile estretne rear and front of tile traveling band, where only 
species r and 92, respectively, me present, are readily obtained from conclition (IO), 
At the rear, tile absence of species 2, . . . , n to tile I 

IL, al;&.1 (i = I, * ..) w--I) (Id 

the incles numbers being dictated by condition (9). Similarly, at tlw front, the abscncc 
of species 1, . . . , n- I gives rise to the IL---I trivial roots 

Jti = ull (i = I, . . ., U-I) (IS) 

Thus, any root /zk varies from ccl,k_,.l to Ilk,” across the AIt& trajectory of the upstream 
lxmclle, and from 1z.k:” to cylk acrms the Lllzk trajectory of the clownstream bunclle; the 
region Of h]c” n’tirxavs wit11 p-ogressing deVdOp7le~lt and diSa]~pXrS Wllf31 thC t\VO 

d/&k trajectories merge. 

Tlie composition of all tlie zones in the clistnnce-time plane can now be cnlculntecl 

J. Clworr?nlog., 46 (1970) I-zs 



from the roots IQ” of the initial mixture. We shall characterize the various zones by 
double numbers, j/z referring to the zone between the trajectories of .LI&_, and A& 
of the downstream bundle and those of LIItk--l and Lllzk of the upstream bundle (j < k). 
Using this convention, the jk zone is downstreaq of the trajectories of all Ahi wit11 
i < j of both bundles, upstream of the trajectories of all ~lhp with i > k of both bunclles, 
and between the upstream-bundle and downstream-bundle trajectories of all di’zc with 
j 5 i 5 lz. With the variations of the root values across the respective trajectories as 
noted earlier, the set of roots in the jk zone then is 

Iti = alz ( 2’ = I,...,j-I) 

hi = hi" (i = j, . ..,&-I) (19) 

h$ = %~.,l (i = /2,. . .,92-I) 

and, as conditions (10) show, only species j, . . . ,/2 are present in the zone. The concen- 
trations of these species can be calculatecl from eqns. (14) or (Is), which give, with the 
appropriate substitutions, 

,, Id-1 

1, 

12 

Xl = 
J-T 

(IZ$” -f all) I-T (w -w) 

iJ .f;{ 
(I = j,. . .,A) (20) 

k-1 

JJC 

I 3’1 = - .- - 
hl” 

I r;-_-, 
ml cap 

,! ( 
u11 Qlf? 

La3 f*l 

Bowzdnry veZocities 
The adjusted velocities of all bounclaries can be calculated with equal ease from 

the H-function roots of the initial mixture. All that is neeclecl is the substitution of the 
appropriate root values into the general equation (IG). For the upstream trajectory 
bundle, generated by the composition step at’ the rear of the uniform initial band, one 
findS that the adjusted VdOCity Of the variation dhk Of the arbitary rOOt hk at the zone 
jk (i.e., between the Oh+, and Ait, trajectories of the downstream bundle) is 

L 

Lid = 
J-7 

(h"/w) (21) 

1-3 

Similarly, one finds for the adjusted velocity of the variation Ah, of the downstream 
bundle at the jk zone (i.e., between the dh&l and .dhI, trajectories of the upstream 
bundle) : k 1 

.- 

UL, = 
T-l 

(~~~"/~l,ht-l) (24 

ipj 

As l’ig. 4 has shown, the d/zk trajectory of the upper bundle crosses, in this 
sequence, those of Ah,, Ah,, . . . , Arhkwl of the lower bundle, and the Ah, trajectory 
of the lower bundle crosses, in this sequence, those of ~Iz~,~-~, AIz+2, . . . , Ahj.,~ of the 
upper bundle. Accordingly, the products in eqns. (21) and (22) lose one of their factors 
hlo/czll, 1a20/a12, . . . and hno--l/alsn, 1s110-_2/a~,7L.-~, . . . with each successive cross-over. 
Since condition (9) requires c 

Iz~“/cz~,~,_~ < I < JzBo/alt (i = I, . . . , qt- I) L23) 

J. C?~vo~mztog., 46 (1970) 1-2s .” 



the adjusted velocities of all boundaries of tile upper bundle are larger than unity and 
decrease with each cross-over, whereas those of the lower bunclle are all smaller than 
unity and increase with each cross-over. The adjusted velocity lxm.m~es unity when 
the two dhk trajectories (or 4172~ trajectories) of tlie t\vo bunclles finally merge. 

A glance at the distance-time diagram reveals that the mnc jk is tile last and 
farthest downstream to contain species j and k in tile presence of one anotller. Tile 
development distance (ix., bed lergtli) ancl ncljustecl time, zjk and tjlz, reqUired for 
the resolution of tllese two species are thus given as tlie 2 and z coordinate values of 
the point at which this zone disappears, that is, of the “southeast” corner of the zone 
in the distance-time cliagram. Given the composition of the initial mixture and the 
width of its bancl, all resolution distances and times can thus be calculatecl in a straiglit- 
forward manner by construction of the trajectory grid from the given points of origin 
of the bunclles with the use of eqns. (21) and (22) for the trajectory slopes. Tile results 
of this calculation are listed in Table I. Derivations xre provided in the Appendis. 

Table I gives formulas for two types of operation, namely, development of 
a uniform initial band as in Figs. I and 2, and operation with chelation of the inisture 
prior to its introduction into a column initially loaclecl with onlS; tile retaining ion, as 

ADJUSTED TIME - 
1 2 T/AZ 

I I 

1,2,3,4 
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TABLE I 

DISTANCES AN13 ADJUSTED TIMES FOR RESOLUTION 

Developmc~t of w~tifowt init,ial basad Opcvatio.iz with chelat~iol~ $riov to load&g 
__---_--_- . ..__.. ..--.-_-.._.__ -______.___,__._ _... __.___._ I___-_-_..---- 

&navy sq3aratiolzs 

al2 
I 

01’2 = AZ 
Ga--1 

( 
I 

t12 = 
a12- I 

+ Ya.) dz 

Il’evnary scfinvations 

al3 
213 = AZ 

a13-1 

ho -t- az3Yz0 -t- a13y30 dz  

713 = - 

a13-1 

a12a13(l~,” - I) 
2.12 = -AZ 

ho (aI2 - 1) (aI3 - 1) 

a12a13 Wzo - I> 
-cl2 = - 

/~10/120(a12 - r) (a13- I) 
AZ 

223 = ( r-t a13 (al3 - ho) ) itlo (al3 - I) (al3 - cG$-, A .‘i 

aiDal (ala - ho) 
z2:, = - -- _ z 

hloll,” (al3 - I) (al3 - rq2) 

,, 

( 
1 

Sl’L = -I- Xl0 AZ 
a12 -1 > 

_ 
013 = 

a13x1* + a12xgo -j- x30 Az 

%3-I 

CL13 
t13 = AZ 

a13-= 

I~,“(I~30 - I) 
a12 = 

r, 
z 

(%a- I)(%-- I) 

( 
Ar,O - I 

T12 = I -/- - 
> 

AZ 
(R2 - 1) (G3 - I) 

I~,"(U13- h,O) 
$23 = - 

h3- I)(~-ch2) 

dz 

alI1 J-1 al?1 - h” 
TJ,t = 

5.1’ 
A 

z 
alrr - cqj I- 1 alIt -all 

- K 
I I 

.i=r ,*.., IZ==T 
walk 

*.Jk’“--------- -_- 

llA.0 > 

I I 
ij,/&l -I- -- - - -“J-j,k - 

Ulk--Ulj rllJ /!J”-1 alA: ) ( 

I 

- 
?&Jo__1 

- +) -J-,,L+I] 

12 = 2,...,11 

I 
1 

Z.Jk = [(llkO-- a13)t3,k.j.l -I- (ccl/i - h3°-~)T3-~. k - (ht,:” - h3°-1)~3-1,k+11 *uvnipl 
alk-Chj _;/.! 

--- ---____ -_.--.- -__. _.^_ - ___._._ -- -_ -------- 
A‘7 = wiclth of mm-earth band in (z,t) cliagmm, ~ncnsurccl long liric of constant t [for calculation, s( 

eq”. (x2)1: up:) = y&/x~y:, = cf12/flan. 
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in Fig. 5. In general, tile latter type of operation requires a smaller column length but 
a longer adjusted time for resolution of any given pair of species. Also, the “critical” 
pair, i.~., tliat with the longest resolution distance or time, is not necessarily the same 
for the two types of operation. 

For binary and ternary separations tile formulas in Table I are esplicit in terms 
of the initial composition of the mixture or its H-function roots, which are readily 
calculated from the composition by eqn. (13). For separations of higher order, explicit 
formulas can be given but are impractically lengthy; here Table I only lists those for 
resolution from species I and from species 12 and gives a recursion formula for cal- 
culating 231~ (or zjk) from previously calculated zj -l,k+l, +l,k, and z~,k+l (or correspond- 
ing z values). The equations for the resolution distances in binary and ternary sepa- 
rations are identical with, or ecluivalent to, those given by SILL~N~ and SPEDDING, Po- 

wmL et al.4~u-u, although tile ixnplicit ternary ecluations of the latter appear more conl- 
ples since they lack the economy provicled by the H-function roots. (All but the last 
of these publications, ref. g, were confined to clevelopment of a uniform initial band.) 

The initial condition in development of a uniform band calls for a conmient. 
The formulas in Table I are calculated with the. premise that IX> development takes 
place at any location z prior to that location’s zero of adjusted time. That is, develop- 
ment at any z is presunied to start with a time lag Z/U,, relative to the top of the bed 
(see eqn. (3), solved for t at z = 0). This time lag is esactly the time needed for a non- 
sorbable agent to travel from the top to the location z. Accordingly, the premise is 
geared to operation with a colunm initially free of any developn~ent agent and with 
development by an agent essentially escluded by the ion exchanger. This corresponds 
closely to the conditions in practical separations. 

Another point neecling consideration is that the composition of the original 
rare-earth mixture provides the initial valuesy,‘, . . . , ylLo in development of a uniform 
presorbecl band, but provides the influent values xlO, . . . , .l$L O in operation with clie- 
lation prior to loading. In the first case, the misture is sorbed nonselectively in the 
absence of the chelating agent to give an ion-eschanger composition equal to thit of 
the original mixture; as the front of the chelating anion penetrates the band at z = o, 
slight and selective desorption occurs, to give a liquid-phase composition in equilibrium 
with, and differing from, the essentially uncliangecl ion-exchanger coniposition. In 
contrast, in the second case, the rnisture enters the colunm at its composition xlO,. . . , 

XV& O with the chelating agent providing selective sorption, so that an ion-eschanger 
composition in ecluilibriuni with, ancl differing from, this liquid-phase composition is 
established at the top of the bed. Accordingly, when calculating the set of ILL” from the 
known composition of the original inisture, tllis composition sllc~ulcl be taken as 
Y1OJ . . . , y)& O in development of a uniform initial band, ancl as _xlO, . . .) xno in 
operation with chelation prior to loading. 

The iterative calculation of the resolution distances and times for mistures with 
many components, although straightforward, is lengthy if a computer is not available. 
However, if the establishment of safe design limits is sulficient, the following inequali- 
ties can be used. For development of a uniform initial band: 

k-, 
‘hj AZ I/hj” 

xjk < rjk < 
I/(&j--/%k ' x/%j-- I/ulk 

lJ ($),l, ( 24) 
L++l 

J. CIwomatog., q.G (1970) I-7.5 
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and for operation with chelation. prior to loading: 
k--l 

~I%3 right-hand sides of these inequalities are calculated with constant values of the 
velocities of dhj and d& equalling the actual values at the zone jk, and therefore 
constitute upper limits because the actual velocity difference is larger initially and 
decreases with every crossing of other trajectories (see Fig. G).] 

The equations for the two types of operation reflect certain symmetry properties, 
more fully discussed in the original theory 10 : the equations for one type can be obtained 
from those of the other by interchange of x and y and of z and z, replacement of u, lz, 
and a by their reciprocals, and change of the indices 2’ for the species to n+r --i and 
for roots to 92--i. 

A slightly clifferent notation has been used here than in the original tlieorylO, 
where, to be consistent with the treatment of other kinds of operation, the development 
ion is species I, the species of the mixture are 2, , . . , 32-1, and the retaining ion is IL 
An m-component separation then appears as an (m+z)-component problem and, 

ADJUSTED TIME - 

\ ‘1 
‘\ 

\\ 
‘a 

2 > Zjk 

T > Tjk 

Fig. 6. Calculation of upper limits of resolution clistnnccs and times. Solid lines arc :LctI.A 
trajectories; brolccn lines are fictitious linear trajcctorics used to calculate incqualitics (see 
eqn. 25). 
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con7pared wit11 the present treatment, all roots and separation factors (now relative to 
the development ion) are larger by a factor equalling tile separation factor of the 
clevelopment ion and the first ion of tlie niisture. Tile invariance to the properties of 
tlie development and retaining ions and the attendant possibility of simplifying the 
notation as done here are discussed in tlie original. 

COMI’UTATION FROM OI’ERATINC~ VAl<IA13LES 

The theory outlined above and tile computer program l&mHA17TH11 are in terms 
of normalized and adjusted variables. Practical application will require conversion 
from and to actual physical variables such as volumetric flow rate, column properties, 
ion-esclizk~e capacity, true distances ancl times for resolution, etc. 

In orcler to calculate normalizecl resolution distances ancl times (Z and ‘I’, in 
units of bancl wiclth ,4z) as well as adjusted boundary velocities u,l and compositions 
x1, . . , X?i or Jrl, vvr in tile transient pattern, eitller by Ilancl or with the program * ’ ->_, 
RAIIBAIWH, only the separation factors tilt ancl the fractional rare-earth concentrations 
in tile original misture are neecled. As leas been discussed by I~OWEIL AND SPEDUING~, 
the separation factors in rare-earth separations by ion escliange are essentially given 
by the ratios of tlie stability constants of the conipleses formecl wit11 tlie development 
agent, stronger conlplesin~ resulting in lesser affinity for the resin. At least for standard 
development agents such as etl-lylenecliaruinetetraacetic acid (EDTA), tile separation 
factors can tllus be calculatecl from tabulated stability constants*. I’lle fractional rare- 
eartll concentrations in the original mixture arc taken as ylO, . . . , yTLo in develop- 
ment of a uniformly loaded initial band, and as xlO, 2’ ’ + * , ’ ?I O in operation with 
chelation prior to loading. 

Because ion eschange with clilute solutions is essentially stoichicnnetric and 
because the exchange at the front and rear of tlie rare-eartli bancl is complete, 1:.c., 
involves complete conversion of the resin to and from the rare-earth form, the total 
concentration (in mequiv./cm3 liquicl phase) is the same in tlie influent (clevelopnient 
agent), within tile band, and in the effluent. The conversion of fractional liquid-phase 
concentrations xi in tile rare-earth band or effluent into actual concentrations cd (in 
m.equiv./ctn” liquid please) thus is 

ci = c .zv$ (niequiv./cni3 licluicl phase) W) 

where c is the concentration of tlie development agent (iii tliese units). Tile conversion 
to inequiv./cin3 of column requires multiplication wit11 tlie fractional intrnparticle 
void volume, E : 

c = EC (niequiv./cms column) (27) 

Tlie ion-escliange capacity (in niecluiv./cni:3 of column) can be used directly as 
the total concentration, e, of rare eartlis in tlie ion esclianger. Tlie conversion of the 
fractional concentrations 3~ to any desired units then is obvious. 

The conversion of the respective normalized variables to true resolution clistances 
and times and true boundary velocities recluires, in adclition to C and c’, a knowledge 
of tlie linear flow rate, ltO, and the (adjusted) band wiclth AZ, l’lle linear flow rate is the 

l With the possibtc csccption of yttrium, fur which the separation factor may linvc to bc 
clctcnninctl csl)criliicntnll!t. 

. 
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volumetric flow rate p (in cm3/sec) divided by the cross-sectional area not 
by the resin : 

210 = Q/ES (crn/sec) 

13. JAMES 

occupied 

(28) 

where S is the cross-sectional area of the column (in cmz). The quantity Liz is the width 
of the rare-earth band measured along any line of constant z in the distance-time 
diagram. The true width (i.e., measured along a line of constant true time, t) of the 
band equals the total rare-earth charge, Q (in mequiv.), dividecl by the overall concen- 
tration c + C (total number of mequiv. per cm3 column) ancl the cross-sectional area, S. 
Conversion with eqn. (3) shows that the width along a line of constant t then is 

dz = Q/CS (Clll) (29) 

The normalized resolution clistancesz E Z/AZ and T z Z/AZ, calculatecl by hand 
or obtained as output of the program RAREARTH, can now be converted into true clis- 
tances and times. For clistances, from eqn. (29), 

z=AzZ = QZ/cS (cm) 

and for times, with eqns. (3) ancl (27) to (30). 

t=I 
NO ( 

C 
--t+z = 
c > 

ES AZ 

ti 
( 
$7. -1_ %) = ff- (2 + 

Moreover, as can be shown from eqn. (3), the conversion of the 
velocities, ud, into true Velocities %A is 

?&A = 
$‘O 

1 + c/c&, = 1 + c/&cud 
(cm/set) 

A slight complication arises in operation with chelation 

(30) 

$-) (set) (31) 

acljustecl boundary 

(32) 

prior to loading if 
the flow rate and concentration have different values, 2~~’ ancl C’ (corresponding to v’ 
and c’), during loading than during development, The calculation of the normalized 
variables (xg, yi, ~4, Z, ZJ is not affected, but some of the conversions to true physical 
variables are. The true time for loacling will be 

At’ = Q/C’ j7’ (set) (33) 

The conversion from acljustecl or normalizecl time to true time (countecl from tile start 
of loading) then is 

for t < At’ t= (C/C’)z + z EQ 

%’ 
=7 

V ( 
-I_ $) 

(corresponcling to 

T,(I - EC'Z/C) 

for At’ 5 t 5 At’ -t_ $ 

(corresponding to 
0 

t = At’ -t_ 
z- (C/C’) (AZ-Z) 

%l 

= Q[--$+$ ($-+j] (34) 
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fur t 1 Ait’ -}- 2 

(corresponding to I/’ -1: I) 

t = At +- 
z + (C/C) (T--LIZ) 

ZL,, 

I 

I: 

I Y.--I 
I {l --/---- 

c p’ 
_t_ $ ($ -I- ___ 

/ t’C )I 
In aclclition, the conversions to true velocities and concentrations are affected as 
follows: for t < At’ (corresponding to 7’ ( I - dZ/C), 41.0’ (or Ii’) is to be substituted 
for ‘II,, (or P) in eqn. (32), and for t < Lll’ + z/zbO (corresponding to 7’ < I), c’ and C’ 
are to be substitutecl for c and C, respectively, in eqns. (26) mcl. (32). 

The relatively coniplcs conversion to true time by eclns. (34) is EL consecluence of 
the fact tliat a flow-rate variation is instantaneously propagated througl1 tile column, 
the liquid being virtually incompressible, whereas a concentration. vnriation in the 
liquid is propagated only at the rate of liquicl-phase ilow (assuming tllat the concen- 
tration e in the ion exchanger is not appreciably changed). As is illustratccl in Fig. 7, 
the flow rate is q,’ to the left of tllc lint t = Lit’, and is ?,I.(, to tile right of tllis line, while 
the concentration is C’ to tlic left of the line t = Lit’ -b z/.16,, (which is also the line 
T= I and z = LIZ), and is C to the right of tllis line. This leads to the three regions, 
separated by the two lines, and each covered by one of the three eqns. (34), (For 

TIME- 
At 

RARE EARTH 
BAND 

, I 
FLOW RATE 

4 \ 
FLOW RATE ‘J,, 

\_ . 
CONC. C’ CONCENTRATION C 

-l 

\- 
\\ 

I?ig. 7. Cllclatc lo:~cling .with clil’fcrcnt flow r;\te illltl concentration (scIicni:~tiC). CI~~~l11~:cS in Slope 
of band front corrcsponcl to loacliti &g with Ilo\\~ IXtc ;LllCI coriccntt’ution 1~0th tn*icc iLS Iligll its for 

clcvcloplllcnt, 



clarity, Fig. 7 greatly exaggerates the. angle between the lines t = dt’ a.r?d I = dt’ + 
Z/21*0.) 

An unexpected result is that the true distances (e.g., of resolution) are invariant 
to changes of flow rate and concentration, since the conversion factor AZ, according 
to eqn. (zq), is independent of these variables. This l~olcls for development of a uniform 
initial band as well*. 

It has been tacitly implied above that the separation factors are not altered 
by the concentration variation. If they are, an exact calculation, while entirely 
feasible, becomes quite complex. The computation must then be carried to z = dz 
(corresponcling to T = I) with the separation factors pertaining to c’, ancl the com- 
position profile along z = ,4z nlust then be used as the initial condition for a new 
calculation with the factors pertaining to c. In general, all boundaries esisting at 
z = dz, being coherent under the old set of separation factors, will be noncoherent 
under the new set and will therefore each give rise to a new set of coherent bounclaries. 
This complication exceeds the faculties of the RAREARTH program. l:ortunately, the 
actual concentration depenclence of the separation factors of the rare earths is usually 
not larger than the uncertainty of their measurement, except possibly for lanthanide- 
yttrium systems. Also, the design is usually clictated by one of the longer resolution 
distances and times, and these are not much affected by somewhat different separation 
factors during loading: for species hard to separate, the loacling time is but a small 
fraction of the resolution time and gives very little segregation. For most practical 
purposes, different separation factors during loading can therefore by ignored. 

Another complication not covered here arises if one or several front or rear 
portions of the incompletely developed band are cut off at some intermediate stage or 
stages. Boundary trajectories that leacl into the discarded portion will then be shifted, 
at the cut-off distance, to the cut-off point without change in slope, and none of the 
transient compositions will be altered. The detailed theory for this type of operation, 
which is of some practical importance, will be presented in a separate publication. 

A PRACTICAL I'?SAMPLE 

The practical application of the theory will be illustrated by the calculations 
for an ion-exchange separation of the rare earths of euxenite by displacement develop- 
ment with ethylenediaminetetraacetic acid (EDTA). A typical fractional composition 
of the fifteen rare earths of eusenite, a mineral rich in the yttrium earths, is shown in 
Table II. Table II also lists the separation factors relative to lanthanutn (species I) 

in tile presence of EDTA as calculatecl from the EDTA stability constants given by 
WHEELWRIGHT et ad.*“. 

l The inclcpcnclcncc in the ran~c C e C is, of course, \vcll known from simpler theories. 
M’llat is shown hcrc is that it cstctltls l.x~~oncl this rntqc. A couipcnsntioti of cfTccts is involved. 
AS is known from gcncral chromntogra~hic theory, the separation cfficicncy lcsscns xvith in- 
creasing mobile-plmsc conccntratioxi because the rclntivc tni~mtion rates of the niolcculcs of the 
species bccoinc niorc similar (c,~., see ref. 12). In the prcscnt CRSL‘, the numerical values of the 
resolution distances cspressccl in units of lmncl lcn$h (at constant true time, as usccl by PO\VELl.. 
cl nl.) incleed incre:lsc, but this turns out to bc con~pcnsatccl by the shorter lcn@h of the bancl, 
requiring lesser distances of relocation within the band upon scpration, so that the true clistxnccs 
in cm arc invariant. 
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For a preparative separation on pilot-plant smle with ;L general-purpose strong- 
acid cation-e.sciiange resin, realistic oper:lting variables would be ahut 8s follows: 

Amount of rare earths (!= 
Cross-sectional area of column s = 
‘I?ractional intraparticle void volume E = 
Ion-exchange calmcity C= 
Concentration of clevelolxiient agent c = 
Volumetric flow rate J&z 

20,000 mequiv. 
100 cmz 

0.4 
2.0 mecluiv./crn~~ column 
0.10 i7iequiv./ctii:5 solution 
2.0 clll:~/sec 

Under these conditions, tlie bnncl wicltl1 is I00 cm. (lkcause c < c’, tllere is virtually 
no clifference between the wicltlls measured along lines of constant t ancl of constant z, 
the “adjustment” of z by - 2 in ecln, (3) being negligible.) The time required to clisphce 
the bancl by a distance equal to its own length is rll = ~/CT) = IOO,OOO set = ~7~s ii. 

IXstmce-time cliagrams for development of a uniformly lonclecl initial lxmcl and 
for operation with chelation prior to loxling, calculated with tile program RAREAWH 
from the data in Table II, are shown in ITigs. S and 0. Scales of true distance mcl time 
have been aclclecl in accordance with tlie operatin g conditions listecl above. For oper- 
ation with prior chelation, the true-time scale presumes that the concentration and 
flow rate are the same for loading as for clevelolxiient. l:or reasons of scale, the cliagrams 
do not estencl to the point of resolution of gacloliniuni from europiuni, at % - 2.644, 
-. 
1 = 2.Go1 .for clcvelopnient of a uniform i17itid lmncl, and at % == 1.661, 7‘ = 2.619 

for operation with prior chelation. 
A conlpm-ison of the clistance-time diagrams for the tivo types of operation is 

instructive. In generd, clevelopnient of a uniform initial lxmcl rcquircs longer clistmces 
but shorter times for resolution. (It slioulcl be notecl, Iiowcver, that tlie time requirecl 
for loading the initial bancl is not incluclecl!) Development of a uniform bancl tends to 
give long resolution clistances particularly for the species of low affinity for the resin 
( .i.c., species with a high incles number), ancl operation \vitll prior chelation tencls to 
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give long resolution times particularly for species with hi& aflinity (low index number). 
Thus, there is incentive to switch from the conventional development of a uniform 
band to chelated loading if excessive column len@h is required to resolve a critical 
pair of low-affinity species. 

Another feature that comes out clearly in tile esample in Figs. S and g is that 
resolution of a major component from its neighbors tends to require long distances 
and times even if the respective separation factors are favorable. Thus resolution of 
the main component, yttrium (mole fraction o.Gzz), from terbium in development of 
a uniform band, and from dysprosium in operation with prior chelation, recluires 
almost as long a distance ancl time as that of the pair europium-~aclolinium, althougll 
the separation factors CCyb,Y = I.51 and aY,'Dy = I.55 are significantly larger than 

Cl3U,GCl = 1.023. 

APPENDIX 

Root varintiom across coJacre7at bouradaries 
The rule that only one H-function root varies across any coherent boundary 

can be clerived, for displacement clevelopment, as follows. According to eqn. (s), the 
adjusted velocity of a concentration step of an arbitrary species j, regardless of the 
behavior of other species, is 

(A. I) 

where primes and clouble primes refer to the two sicles of tlie step. Expressing the XJ 
and yj in terms of 1~s by means of eqns. (14) and (IS) one finds 

'IL-1 n-1 

T-I 
(/$ -Ulj) - 

-l-I 
(I$ -Ulj) 

'i -1 ii 
Ud = ,n -- -- 

7L-1. n-l 

1 

(A. 2) 

I -[(hl t 
l-b $7 

- ct1j)/lZ$‘] -j--[[(hl#’ -Ulj)/h.l”.J 

$=a1 i-1 Eli 
g*j I 

The condition of coherence is that ud, and therefore the right-hand side of eqn. (A.z), 

will have the same value for all species j = I, . . . , $2. The right-hand side of this 
equation will meet this condition if, and only if, all features distinguishing j from other 
species disappear. For this to be the case, all products in the numerator as well as in 
the denominator must have all. factors but one in common. In view of the limits 
imposed on the root values by conclition (g), this requires 

JQ’ = 1~” for ~~11 i ‘+ Jc (A-3) 

where k may be any number I, . . , , s- I. That is, all roots but one, &, must have the 
same value on both sides of the step. (At least one root must vary across the step, 
which otherwise would be nonexistent.) With this restriction, eqn. (A.2) is readily 
shown to reduce to eqn. (16). 

This abbreviated proof presupposes that: (I) the step remains sharp, and (2) 

equalities Jz~‘_~ = IQ” or 122’ = hg” -I, admitted by condition (g), do not occur. 
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ADJUSTED TIME A 

Fig=. I 0. ‘I’rojcctorics for triangle fortni~lr~ (I~rcmi 

Cn.k‘ldntiou of vi_?sok.ltz’on di,dn12ct% m2c-l timas 

The coordinates (2, z) of intersection of two 
points of origin (zn, 7~) and (213, TU) and slopes u.4 
As Fig. IO shows: ’ 

Z-.zA z-q3 
UA = and 

Z-7TA 
1113 = 

t---13 

Solving for ?: and 2 one finds 

UB’GB --unzn ----13+~n 
~zz---- 

U13--UA 

linear trajectories A and 13, with 
and uB, are calculated as follows, 

(A.4) 

(A.5) 
s?i = ,?!A + (Z--A)UA 01. z = zJ3 +‘(z--~&l~ 

Appropriate values of uA and uJ3 can be substituted by means of qns, (21) and (22). 
The “trimgle formula’ ’ (A.5) can then be used to calculate (zl.,,., zl,,J, for which the 
substitutions are 

ZA = nz, zn = 0, zJ3 = 0, tJ3 = 0 (A&) 

for development of a uniform initial band, and 

-YA = 0, zn = 0, ZJ3 = 0, TJ.3 = AZ (A.?) 

for operation with chelation before loading. (Note that the band width in tile t direction 
is alsodz, since the slope of the trajectories of the front and rear boundaries of the bancl 
is unity.) ITurtlier values (z,k, zlfi) (1: = 72-1,. . . , 2) and (2~,~, zj7L) (i = 2,. . . ,92.--I) are 
then calculatecl with the triangle formula as recursion formula, with substitution of 
the previously calculated (,Ec~;.~:~~, rl,k+i) for @A, rL\), or (z+_l,T,,, ?$-._~,‘IL) for (zu, z]~). I?01 
the simpler expressions in binary and ternary separations, the. root or roots can be 
expressed in terms of xs or it by means of eqns. (12) or (13) ; this has been clone in 
Table I. 
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(2’ J-l’k+ 

ADJUSTED TIME - 

I yl,k+l) 

’ <js,,kt Tj_l,k) 

1 

Tjk) 

Fig. I I. ‘L’rajcctorics for four-point fw-tiiula. (Vrom HISLFPIEIZICI.I ,\sI) ~<I,I~IN*".) 

In principle, the various qlc and ??jk (2 5 j < k 5 n-1) in separations of four or 
more species can also be calculated with eqn. (A.5) as recursion formula. However, 
the “four-point” formulas in Table I, which allow sets of zjI, and of ??jk to be kenerated 
independently of one another are more convenient, The formula for calculating qk 
frorn z+l,k, Z,J,k+l, is obtained if the equations for the slopes of the four trajectories 
bounding the zone jk 

(AS) 

(see Fig. 11) and the contintiity condition 

(rjk - rj,k+l) - (rjk - +t,k) + (Zj.k,.l - +l,k.+t) 

- (zf--l,k - rj--,,k+l) = 0 (A.9) 

are solved for the five unknowns, that is, for zjk and the four time differences appearing 
in eqns. (A.8) and (A.9). The derivation of the formula for ?Yjk is analogous. 
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pmmmters in eqn. (13) 
concentration of development agent (mequiv./cm3 solution) 
total rare-earth concentration during loading of chelated mixture 
(mequiv./cm3 solution) 
concentration of rare earth 2: in liquid phase in rare-earth band 
(mequiv./cn? liquid phase) 
total rare-earth concentration in liquid phase in rare-earth 13ancl 
(mequiv./cn+ column) 
= t’c’ (niecluiv./cni:3 column) 
ion-eschange capacity (nicquiv./cni3 column) 
argument of the H-function, eqns. (7) and (8) 
,i’tll root of N-function 
number of species in original iiiisture 
total aniount of rare earths (niequiv.) 
cross-sectional arca of column (cm”) 
time (932) 
= Z/AZ 
linear flow rat.e (cni/sec) 
true velocity of lmunclary (cm/set) 
adjustecl velocity of boundary 
volumetric flow rate (cni3/sec) 
fractional liquid-phase concentration of rare earth ?: 
fraFtiona1 resin-phase concentration of rare eartll i 
distance from top of bed (cm) 
resolution distance of rare earths 2’ ancl i cm 
= Z/AZ 
separation factor of rare eartlis ,i and i cm 
adjustecl time 
acljustecl resolution time of rare earths i and i cm 
values of Iti, xi, 3’r in uniform initial lmncl or in cllelated mixture being 
loaded 
values of ‘1~~~ ancl I? during loading of chelated misture 
values of hi, xi, y.l on upstream sicle of boundary 
values of hl, :Vt, ;v~ on downstream side of boundary 

A Xl, rl y, variation of Cg, Ci, Izt, xf, yi across boundary 
,rl I!’ time requirecl for loading of clielatecl mixture (set) 
AZ acljustecl bancl width (cm) 
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